Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Lancet Infect Dis ; 23(10): 1175-1185, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37390836

RESUMO

BACKGROUND: Zika virus infection is a threat to at-risk populations, causing major birth defects and serious neurological complications. Development of a safe and efficacious Zika virus vaccine is, therefore, a global health priority. Assessment of heterologous flavivirus vaccination is important given co-circulation of Japanese encephalitis virus and yellow fever virus with Zika virus. We investigated the effect of priming flavivirus naive participants with a licensed flavivirus vaccine on the safety and immunogenicity of a purified inactivated Zika vaccine (ZPIV). METHODS: This phase 1, placebo-controlled, double-blind trial was done at the Walter Reed Army Institute of Research Clinical Trials Center in Silver Spring, MD, USA. Eligible participants were healthy adults aged 18-49 years, with no detectable evidence of previous flavivirus exposure (by infection or vaccination), as measured by a microneutralisation assay. Individuals with serological evidence of HIV, hepatitis B, or hepatitis C infection were excluded, as were pregnant or breastfeeding women. Participants were recruited sequentially into one of three groups (1:1:1) to receive no primer, two doses of intramuscular Japanese encephalitis virus vaccine (IXIARO), or a single dose of subcutaneous yellow fever virus vaccine (YF-VAX). Within each group, participants were randomly assigned (4:1) to receive intramuscular ZPIV or placebo. Priming vaccinations were given 72-96 days before ZPIV. ZPIV was administered either two or three times, at days 0, 28, and 196-234. The primary outcome was occurrence of solicited systemic and local adverse events along with serious adverse events and adverse events of special interest. These data were analysed in all participants receiving at least one dose of ZPIV or placebo. Secondary outcomes included measurement of neutralizing antibody responses following ZPIV vaccination in all volunteers with available post-vaccination data. This trial is registered at ClinicalTrials.gov, NCT02963909. FINDINGS: Between Nov 7, 2016, and Oct 30, 2018, 134 participants were assessed for eligibility. 21 did not meet inclusion criteria, 29 met exclusion criteria, and ten declined to participate. 75 participants were recruited and randomly assigned. 35 (47%) of 75 participants were male and 40 (53%) were female. 25 (33%) of 75 participants identified as Black or African American and 42 (56%) identified as White. These proportions and other baseline characteristics were similar between groups. There were no statistically significant differences in age, gender, race, or BMI between those who did and did not opt into the third dose. All participants received the planned priming IXIARO and YF-VAX vaccinations, but one participant who received YF-VAX dropped out before receipt of the first dose of ZPIV. 50 participants received a third dose of ZPIV or placebo, including 14 flavivirus-naive people, 17 people primed with Japanese encephalitis virus vaccine, and 19 participants primed with yellow fever vaccine. Vaccinations were well tolerated across groups. Pain at the injection site was the only adverse event reported more frequently in participants who received ZPIV than in those who received placebo (39 [65%] of 60 participants, 95% CI 51·6-76·9 who received ZPIV vs three [21·4%] of 14 who received placebo; 4·7-50·8; p=0·006). No patients had an adverse event of special interest or serious adverse event related to study treatment. At day 57, the flavivirus-naive volunteers had an 88% (63·6-98·5, 15 of 17) seroconversion rate (neutralising antibody titre ≥1:10) and geometric mean neutralising antibody titre (GMT) against Zika virus of 100·8 (39·7-255·7). In the Japanese encephalitis vaccine-primed group, the day 57 seroconversion rate was 31·6% (95% CI 12·6-56·6, six of 19) and GMT was 11·8 (6·1-22·8). Participants primed with YF-VAX had a seroconversion rate of 25% (95% CI 8·7-49·1, five of 20) and GMT of 6·6 (5·2-8·4). Humoral immune responses rose substantially following a third dose of ZPIV, with seroconversion rates of 100% (69·2-100; ten of ten), 92·9% (66·1-99·8; 13 of 14), and 60% (32·2-83·7, nine of 15) and GMTs of 511·5 (177·6-1473·6), 174·2 (51·6-587·6), and 79 (19·0-326·8) in the flavivirus naive, Japanese encephalitis vaccine-primed, and yellow fever vaccine-primed groups, respectively. INTERPRETATION: We found ZPIV to be well tolerated in flavivirus naive and primed adults but that immunogenicity varied significantly according to antecedent flavivirus vaccination status. Immune bias towards the flavivirus antigen of initial exposure and the timing of vaccination may have impacted responses. A third ZPIV dose overcame much, but not all, of the discrepancy in immunogenicity. The results of this phase 1 clinical trial have implications for further evaluation of ZPIV's immunisation schedule and use of concomitant vaccinations. FUNDING: Department of Defense, Defense Health Agency; National Institute of Allergy and Infectious Diseases; and Division of Microbiology and Infectious Disease.


Assuntos
Vírus da Encefalite Japonesa (Espécie) , Vacinas contra Encefalite Japonesa , Vacinas Virais , Vacina contra Febre Amarela , Infecção por Zika virus , Zika virus , Adulto , Feminino , Humanos , Masculino , Anticorpos Neutralizantes , Anticorpos Antivirais , Método Duplo-Cego , Imunogenicidade da Vacina , Vacinas contra Encefalite Japonesa/efeitos adversos , Vacinas de Produtos Inativados , Vacina contra Febre Amarela/efeitos adversos , Vírus da Febre Amarela , Infecção por Zika virus/prevenção & controle , Febre Amarela/prevenção & controle
2.
PLoS Pathog ; 17(6): e1009673, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34170962

RESUMO

Pre-existing immunity to flaviviruses can influence the outcome of subsequent flavivirus infections. Therefore, it is critical to determine whether baseline DENV immunity may influence subsequent ZIKV infection and the protective efficacy of ZIKV vaccines. In this study, we investigated the impact of pre-existing DENV immunity induced by vaccination on ZIKV infection and the protective efficacy of an inactivated ZIKV vaccine. Rhesus macaques and mice inoculated with a live attenuated DENV vaccine developed neutralizing antibodies (NAbs) to multiple DENV serotypes but no cross-reactive NAbs responses to ZIKV. Animals with baseline DENV NAbs did not exhibit enhanced ZIKV infection and showed no overall reduction in ZIKV vaccine protection. Moreover, passive transfer of purified DENV-specific IgG from convalescent human donors did not augment ZIKV infection in STAT2 -/- and BALB/c mice. In summary, these results suggest that baseline DENV immunity induced by vaccination does not significantly enhance ZIKV infection or impair the protective efficacy of candidate ZIKV vaccines in these models. These data can help inform immunization strategies in regions of the world with multiple circulating pathogenic flaviviruses.


Assuntos
Anticorpos Antivirais/imunologia , Vacinas contra Dengue/imunologia , Infecção por Zika virus/prevenção & controle , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/sangue , Reações Cruzadas/imunologia , Humanos , Macaca mulatta , Camundongos , Vacinas Virais/imunologia
3.
Front Immunol ; 12: 640190, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33717194

RESUMO

The epidemic spread of Zika virus (ZIKV), associated with devastating neurologic syndromes, has driven the development of multiple ZIKV vaccines candidates. An effective vaccine should induce ZIKV-specific T cell responses, which are shown to improve the establishment of humoral immunity and contribute to viral clearance. Here we investigated how previous immunization against Japanese encephalitis virus (JEV) and yellow fever virus (YFV) influences T cell responses elicited by a Zika purified-inactivated virus (ZPIV) vaccine. We demonstrate that three doses of ZPIV vaccine elicited robust CD4 T cell responses to ZIKV structural proteins, while ZIKV-specific CD4 T cells in pre-immunized individuals with JEV vaccine, but not YFV vaccine, were more durable and directed predominantly toward conserved epitopes, which elicited Th1 and Th2 cytokine production. In addition, T cell receptor repertoire analysis revealed preferential expansion of cross-reactive clonotypes between JEV and ZIKV, suggesting that pre-existing immunity against JEV may prime the establishment of stronger CD4 T cell responses to ZPIV vaccination. These CD4 T cell responses correlated with titers of ZIKV-neutralizing antibodies in the JEV pre-vaccinated group, but not in flavivirus-naïve or YFV pre-vaccinated individuals, suggesting a stronger contribution of CD4 T cells in the generation of neutralizing antibodies in the context of JEV-ZIKV cross-reactivity.


Assuntos
Anticorpos Antivirais/imunologia , Linfócitos T CD4-Positivos/imunologia , Vacinas contra Encefalite Japonesa/imunologia , Zika virus/imunologia , Anticorpos Neutralizantes/imunologia , Reações Cruzadas , Método Duplo-Cego , Vírus da Encefalite Japonesa (Espécie)/imunologia , Humanos , Vacinas de Produtos Inativados/imunologia , Vacina contra Febre Amarela/imunologia , Vírus da Febre Amarela/imunologia , Infecção por Zika virus/imunologia , Infecção por Zika virus/prevenção & controle
4.
J Infect Dis ; 223(10): 1707-1716, 2021 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-32966573

RESUMO

BACKGROUND: Dengue is a global health problem and the development of a tetravalent dengue vaccine with durable protection is a high priority. A heterologous prime-boost strategy has the advantage of eliciting immune responses through different mechanisms and therefore may be superior to homologous prime-boost strategies for generating durable tetravalent immunity. METHODS: In this phase 1 first-in-human heterologous prime-boost study, 80 volunteers were assigned to 4 groups and received a tetravalent dengue virus (DENV-1-4) purified inactivated vaccine (TDENV-PIV) with alum adjuvant and a tetravalent dengue virus (DENV-1-4) live attenuated vaccine (TDENV-LAV) in different orders and dosing schedules (28 or 180 days apart). RESULTS: All vaccination regimens had acceptable safety profiles and there were no vaccine-related serious adverse events. TDEN-PIV followed by TDEN-LAV induced higher neutralizing antibody titers and a higher rate of tetravalent seroconversions compared to TDEN-LAV followed by TDEN-PIV. Both TDEN-PIV followed by TDEN-LAV groups demonstrated 100% tetravalent seroconversion 28 days following the booster dose, which was maintained for most of these subjects through the day 180 measurement. CONCLUSIONS: A heterologous prime-boost vaccination strategy for dengue merits additional evaluation for safety, immunogenicity, and potential for clinical benefit. CLINICAL TRIALS REGISTRATION: NCT02239614.


Assuntos
Vacinas contra Dengue , Dengue , Imunogenicidade da Vacina , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Dengue/prevenção & controle , Vacinas contra Dengue/imunologia , Humanos , Vacinas Atenuadas/imunologia , Vacinas Combinadas/imunologia
5.
Lancet Infect Dis ; 20(9): 1061-1070, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32618279

RESUMO

BACKGROUND: The development of an effective vaccine against Zika virus remains a public health priority. A Zika purified inactivated virus (ZPIV) vaccine candidate has been shown to protect animals against Zika virus challenge and to be well tolerated and immunogenic in humans up to 8 weeks of follow-up. We aimed to assess the safety and immunogenicity of ZPIV in humans up to 52 weeks of follow-up when given via standard or accelerated vaccination schedules. METHODS: We did a single-centre, double-blind, randomised controlled, phase 1 trial in healthy adults aged 18-50 years with no known history of flavivirus vaccination or infection at Beth Israel Deaconess Medical Center in Boston, MA, USA. Participants were sequentially enrolled into one of three groups: ZPIV given at weeks 0 and 4 (standard regimen), weeks 0 and 2 (accelerated regimen), or week 0 alone (single-dose regimen). Within each group, participants were randomly assigned using a computer-generated randomisation schedule to receive an intramuscular injection of 5 µg ZPIV or saline placebo, in a ratio of 5:1. The sponsor, clinical staff, investigators, participants, and laboratory personnel were masked to treatment assignment. The primary endpoint was safety up to day 364 after final dose administration, and secondary endpoints were proportion of participants with positive humoral immune responses (50% microneutralisation titre [MN50] ≥100) and geometric mean MN50 at observed peak response (ie, the highest neutralising antibody level observed for an individual participant across all timepoints) and week 28. All participants who received at least one dose of ZPIV or placebo were included in the safety population; the analysis of immunogenicity at observed peak included all participants who received at least one dose of ZPIV or placebo and had any adverse events or immunogenicity data after dosing. The week 28 immunogenicity analysis population consisted of all participants who received ZPIV or placebo and had immunogenicity data available at week 28. This trial is registered with ClinicalTrials.gov, NCT02937233. FINDINGS: Between Dec 8, 2016, and May 17, 2017, 12 participants were enrolled into each group and then randomly assigned to vaccine (n=10) or placebo (n=2). There were no serious or grade 3 treatment-related adverse events. The most common reactions among the 30 participants who received the vaccine were injection-site pain (24 [80%]), fatigue (16 [53%]), and headache (14 [46%]). A positive response at observed peak titre was detected in all participants who received ZPIV via the standard regimen, in eight (80%) of ten participants who received ZPIV via the accelerated regimen, and in none of the ten participants who received ZPIV via the single-dose regimen. The geometric mean of all individual participants' observed peak values was 1153·9 (95% CI 455·2-2925·2) in the standard regimen group, 517·7 (142·9-1875·6) in the accelerated regimen group, and 6·3 (3·7-10·8) in the single-dose regimen group. At week 28, a positive response was observed in one (13%) of eight participants who received ZPIV via the standard regimen and in no participant who received ZPIV via the accelerated (n=7) or single-dose (n=10) regimens. The geomteric mean titre (GMT) at this timepoint was 13·9 (95% CI 3·5-55·1) in the standard regimen group and 6·9 (4·0-11·9) in the accelerated regimen group; antibody titres were undetectable at 28 weeks in participants who received ZPIV via the single-dose regimen. For all vaccine schedules, GMTs peaked 2 weeks after the final vaccination and declined to less than 100 by study week 16. There was no difference in observed peak GMTs between the standard 4-week and the accelerated 2-week boosting regimens (p=0·4494). INTERPRETATION: ZPIV was safe and well tolerated in humans up to 52 weeks of follow-up. ZPIV immunogenicity required two doses and was not durable. Additional studies of ZPIV to optimise dosing schedules are ongoing. FUNDING: The Henry M Jackson Foundation for the Advancement of Military Medicine.


Assuntos
Imunogenicidade da Vacina , Vacinas de Produtos Inativados/imunologia , Vacinas Virais/imunologia , Infecção por Zika virus/prevenção & controle , Zika virus/imunologia , Adolescente , Adulto , Feminino , Humanos , Esquemas de Imunização , Masculino , Pessoa de Meia-Idade , Vacinas de Produtos Inativados/administração & dosagem , Vacinas de Produtos Inativados/efeitos adversos , Vacinas Virais/administração & dosagem , Vacinas Virais/efeitos adversos , Adulto Jovem
6.
Am J Trop Med Hyg ; 103(1): 132-141, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32342848

RESUMO

Dengue disease and its causative agents, the dengue viruses (DENV-1-4), cause high morbidity in tropical and subtropical regions. We evaluated three dosing regimens of the investigational tetravalent AS03B-adjuvanted dengue-purified inactivated vaccine (DPIV+AS03B). In this phase 1/2, observer-blind, placebo-controlled study (NCT02421367), 140 healthy adults were randomized 1:1:2 to receive DPIV+AS03B according to the following regimens: 0-1 month (M), 0-1-6 M, or 0-3 M. Participants received DPIV+AS03B or placebo at M0, M1, M3, and M6 according to their dosing schedule. Primary objectives were 1) to evaluate the safety of DPIV+AS03B for 28 days (D) after each dose; 2) to demonstrate the added value of a booster dose (0-1-6 M versus 0-1 M) based on neutralizing antibody titers to each DENV type (DENV-1-4) at 28 D after the last dose; and, if this objective was met, 3) to demonstrate the benefit of a longer interval between the first and second doses (0-1 M versus 0-3 M). Adverse events (AEs) within 7 D after vaccination tended to be more frequent after DPIV+AS03B doses than placebo; the number of grade 3 AEs was low (≤ 4.5% after DPIV+AS03B; ≤ 2.9% after placebo), with no obvious differences across groups. Within 28 D following each dose, the frequency of unsolicited AEs after DPIV+AS03B appeared higher for three-dose (0-1-6 M) than two-dose (0-1 M and 0-3 M) regimens. No serious AEs were considered related to vaccination, and no potential immune-mediated diseases were reported during the study. All three schedules were well tolerated. Both primary immunogenicity objectives were demonstrated. The 0-3 M and 0-1-6 M regimens were more immunogenic than the 0-1 M regimen.


Assuntos
Anticorpos Neutralizantes/biossíntese , Anticorpos Antivirais/biossíntese , Vacinas contra Dengue/administração & dosagem , Vírus da Dengue/imunologia , Dengue/prevenção & controle , Vacinação/métodos , Adulto , Dengue/imunologia , Dengue/virologia , Vacinas contra Dengue/efeitos adversos , Vacinas contra Dengue/biossíntese , Feminino , Voluntários Saudáveis , Humanos , Imunogenicidade da Vacina , Masculino , Pessoa de Meia-Idade , Segurança do Paciente , Vacinas Atenuadas , Vacinas de Subunidades
7.
Am J Trop Med Hyg ; 102(5): 951-954, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32124728

RESUMO

Four formulations of an investigational tetravalent dengue purified inactivated vaccine, administered as two doses one month (M) apart, were previously shown to be immunogenic and well-tolerated up to M13 of the phase I study NCT01702857. Here, we report results of the follow-up from M14 to year (Y) 3. One hundred healthy Puerto Rican adults, predominantly dengue virus (DENV)-primed, were randomized 1:1:1:1:1 to receive placebo or vaccine formulations: 1 µg/serotype/dose adjuvanted with aluminum, AS01E or AS03B, or aluminum-adjuvanted 4 µg/serotype/dose. No serious adverse events occurred. Two medically-attended potential immune-mediated disease cases, vaccination unrelated, were reported (groups 1 µg+Alum and 1 µg+AS03B). Of 14 instances of suspected dengue, none were laboratory confirmed. Geometric mean neutralizing antibody titers against DENV 1-4 waned from M14, but remained above pre-vaccination levels for DENV 1-3, with the highest values for group 1 µg+AS03B: 1220.1, 920.5, 819.4, and 940.5 (Y2), and 1329.3, 1169.2, 1219.8, and 718.9 (Y3). All formulations appeared to be safe and immunogenic during the 3-year follow-up.


Assuntos
Vacinas contra Dengue/uso terapêutico , Vírus da Dengue/imunologia , Dengue/prevenção & controle , Adulto , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Vacinas contra Dengue/administração & dosagem , Vacinas contra Dengue/efeitos adversos , Vacinas contra Dengue/imunologia , Feminino , Seguimentos , Humanos , Masculino , Porto Rico
8.
Nat Med ; 26(2): 228-235, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32015557

RESUMO

Zika virus (ZIKV) has caused significant disease, with widespread cases of neurological pathology and congenital neurologic defects. Rapid vaccine development has led to a number of candidates capable of eliciting potent ZIKV-neutralizing antibodies (reviewed in refs. 1-3). Despite advances in vaccine development, it remains unclear how ZIKV vaccination affects immune responses in humans with prior flavivirus immunity. Here we show that a single-dose immunization of ZIKV purified inactivated vaccine (ZPIV)4-7 in a dengue virus (DENV)-experienced human elicited potent cross-neutralizing antibodies to both ZIKV and DENV. Using a unique ZIKV virion-based sorting strategy, we isolated and characterized multiple antibodies, including one termed MZ4, which targets a novel site of vulnerability centered on the Envelope (E) domain I/III linker region and protects mice from viremia and viral dissemination following ZIKV or DENV-2 challenge. These data demonstrate that Zika vaccination in a DENV-experienced individual can boost pre-existing flavivirus immunity and elicit protective responses against both ZIKV and DENV. ZPIV vaccination in Puerto Rican individuals with prior flavivirus experience yielded similar cross-neutralizing potency after a single vaccination, highlighting the potential benefit of ZIKV vaccination in flavivirus-endemic areas.


Assuntos
Dengue/imunologia , Doadores de Tecidos , Vacinas Virais/uso terapêutico , Infecção por Zika virus/imunologia , Infecção por Zika virus/prevenção & controle , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Chlorocebus aethiops , Reações Cruzadas , Vírus da Dengue , Mapeamento de Epitopos , Feminino , Flavivirus/metabolismo , Humanos , Imunoglobulina G/química , Concentração Inibidora 50 , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Ligação Proteica , Domínios Proteicos , Vacinação , Vacinas de Produtos Inativados/uso terapêutico , Células Vero , Viremia , Zika virus
9.
mSphere ; 5(1)2020 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-31969476

RESUMO

Dengue is the most prevalent arboviral disease afflicting humans, and a vaccine appears to be the most rational means of control. Dengue vaccine development is in a critical phase, with the first vaccine licensed in some countries where dengue is endemic but demonstrating insufficient efficacy in immunologically naive populations. Since virus-neutralizing antibodies do not invariably correlate with vaccine efficacy, other markers that may predict protection, including cell-mediated immunity, are urgently needed. Previously, the Walter Reed Army Institute of Research developed a monovalent purified inactivated virus (PIV) vaccine candidate against dengue virus serotype 1 (DENV-1) adjuvanted with alum. The PIV vaccine was safe and immunogenic in a phase I dose escalation trial in healthy, flavivirus-naive adults in the United States. From that trial, peripheral blood mononuclear cells obtained at various time points pre- and postvaccination were used to measure DENV-1-specific T cell responses. After vaccination, a predominant CD4+ T cell-mediated response to peptide pools covering the DENV-1 structural proteins was observed. Over half (13/20) of the subjects produced interleukin-2 (IL-2) in response to DENV peptides, and the majority (17/20) demonstrated peptide-specific CD4+ T cell proliferation. In addition, analysis of postvaccination cell culture supernatants demonstrated an increased rate of production of cytokines, including gamma interferon (IFN-γ), IL-5, and granulocyte-macrophage colony-stimulating factor (GM-CSF). Overall, the vaccine was found to have elicited DENV-specific CD4+ T cell responses as measured by enzyme-linked immunosorbent spot (ELISpot), intracellular cytokine staining (ICS), lymphocyte proliferation, and cytokine production assays. Thus, together with antibody readouts, the use of a multifaceted measurement of cell-mediated immune responses after vaccination is a useful strategy for more comprehensively characterizing immunity generated by dengue vaccines.IMPORTANCE Dengue is a tropical disease transmitted by mosquitoes, and nearly half of the world's population lives in areas where individuals are at risk of infection. Several vaccines for dengue are in development, including one which was recently licensed in several countries, although its utility is limited to people who have already been infected with one of the four dengue viruses. One major hurdle to understanding whether a dengue vaccine will work for everyone-before exposure-is the necessity of knowing which marker can be measured in the blood to signal that the individual has protective immunity. This report describes an approach measuring multiple different parts of immunity in order to characterize which signals one candidate vaccine imparted to a small number of human volunteers. This approach was designed to be able to be applied to any dengue vaccine study so that the data can be compared and used to inform future vaccine design and/or optimization strategies.


Assuntos
Vacinas contra Dengue/imunologia , Dengue/prevenção & controle , Imunidade Celular , Leucócitos Mononucleares/imunologia , Proteínas Virais/imunologia , Adulto , Linfócitos T CD4-Positivos/imunologia , Proliferação de Células , Citocinas/imunologia , Dengue/imunologia , Vírus da Dengue/classificação , Feminino , Humanos , Interferon gama/imunologia , Interleucina-2/imunologia , Masculino , Pessoa de Meia-Idade , Peptídeos/imunologia , Vacinação , Vacinas de Produtos Inativados/imunologia , Adulto Jovem
10.
Trop Med Infect Dis ; 4(3)2019 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-31261617

RESUMO

In February of 2016, the World Health Organization (WHO) declared Zika virus (ZIKV) a Public Health Emergency of International Concern. This prompted a rapid response from both the private and public sector resulting in the generation of several promising vaccine candidates. In this review, we discuss published scientific efforts associated with these novel vaccines, emphasizing the immunological assays used to evaluate their immunogenicity and efficacy, and support future licensure.

11.
Hum Vaccin Immunother ; 15(9): 2090-2105, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30829100

RESUMO

Three phase II randomized trials evaluated the safety/immunogenicity of two formulations of live-attenuated tetravalent dengue virus (TDEN) vaccine in dengue-endemic (Puerto Rico, Thailand) and non-endemic (US) regions (NCT00350337/NCT00370682/NCT00468858). We describe cell-mediated immune (CMI) responses; safety and humoral responses were reported previously. Participants received two doses of vaccine or control (placebo or the precursor live-attenuated TDEN vaccine) 6 months apart. Selected US participants received a booster 5-12 months post-dose 2. Evaluated subsets of the per-protocol cohorts included 75 primarily dengue virus (DENV)-unprimed US adults, 69 primarily flavivirus-primed Thai adults, and 100 DENV-primed or DENV-unprimed Puerto Rican adults/adolescents/children. T-cell responses were quantified using intracellular cytokine staining (ICS; DENV-infected cell-lysate or DENV-1/DENV-2 peptide-pool stimulation) or IFN-γ ELISPOT (DENV-2 peptide-pool stimulation). Memory B-cell responses were quantified using B-cell ELISPOT. Across populations and age strata, DENV serotype-specific CD4+ T-cell responses were slightly to moderately increased (medians ≤0.18% [ICS]), DENV-2-biased, and variable for both formulations. Responses in unprimed subjects were primarily detected post-dose 1. Response magnitudes in primed subjects were similar between doses. Multifunctional CD8+ T-cell responses were detected after peptide-pool stimulation. T-cell responses were mostly directed to DENV nonstructural proteins 3 and 5. Memory B-cell responses were tetravalent, of low-to-moderate magnitudes (medians ≤0.25%), and mainly observed post-dose 2 in unprimed subjects and post-dose 1 in primed subjects. A third dose did not boost CMI responses. In conclusion, both formulations of the live-attenuated TDEN vaccine candidate were poorly to moderately immunogenic with respect to B-cell and T-cell responses, irrespective of the priming status of the participants. Abbreviation ATP: according-to-protocol; ICS: Intracellular Cytokine Staining; NS3: Nonstructural protein 3; ELISPOT: Enzyme-Linked ImmunoSpot; JEV: Japanese encephalitis virus; PBMC: peripheral blood mononuclear cells.


Assuntos
Vacinas contra Dengue/imunologia , Dengue/prevenção & controle , Imunidade Celular , Adolescente , Adulto , Anticorpos Antivirais/sangue , Criança , Pré-Escolar , Estudos de Coortes , Vírus da Dengue , Doenças Endêmicas , Feminino , Humanos , Memória Imunológica , Lactente , Masculino , Pessoa de Meia-Idade , Porto Rico , Tailândia , Vacinas Atenuadas/imunologia , Adulto Jovem
12.
Am J Trop Med Hyg ; 98(5): 1435-1443, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29512481

RESUMO

The safety and immunogenicity of four adjuvanted formulations of an investigational tetravalent dengue purified inactivated vaccine (DPIV) were evaluated in a predominantly dengue-primed population in Puerto Rico. In this placebo-controlled, randomized, observer-blind, phase I trial, 100 healthy adults were randomized 1:1:1:1:1 to receive DPIV at Day (D)0 and D28 (1 µg per dengue virus [DENV] type 1-4 adjuvanted with either alum, AS01E or AS03B, or 4 µg per DENV type adjuvanted with alum) or saline placebo. Functional antibody responses were assessed using a microneutralization assay at D56, Month (M)7, and M13. All DPIV formulations were well tolerated and no safety signals were identified through M13. The M13 according-to-protocol (ATP) immunogenicity cohort included 83 participants. The ATP analysis of immunogenicity was performed only on the 78 subjects seropositive for ≥ 1 DENV type at baseline: 69 tetravalent, three trivalent, two bivalent, and four monovalent. In all DPIV groups, geometric mean antibody titers (GMTs) increased from D0 to D56 and waned modestly through M13, while remaining well above prevaccination levels. The 4 µg + alum and the AS01E- and AS03B-adjuvanted formulations were highly immunogenic, with M13-neutralizing antibody GMTs against all four DENV types above 1,000. M13/D0 GMT ratios were highest in the 1 µg + AS03B group (ranging 3.2-3.7 depending on the DENV type). These results encourage continued clinical development of DPIV (ClinicalTrials.gov: NCT01702857).


Assuntos
Vacinas contra Dengue/administração & dosagem , Vacinas contra Dengue/imunologia , Dengue/prevenção & controle , Adjuvantes Imunológicos , Adolescente , Adulto , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Dengue/epidemiologia , Vacinas contra Dengue/efeitos adversos , Relação Dose-Resposta Imunológica , Feminino , Humanos , Masculino , Porto Rico/epidemiologia , Vacinas Atenuadas/administração & dosagem , Vacinas Atenuadas/efeitos adversos , Vacinas Atenuadas/imunologia , Vacinas de Produtos Inativados/administração & dosagem , Vacinas de Produtos Inativados/efeitos adversos , Vacinas de Produtos Inativados/imunologia , Adulto Jovem
13.
Lancet ; 391(10120): 563-571, 2018 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-29217375

RESUMO

BACKGROUND: A safe, effective, and rapidly scalable vaccine against Zika virus infection is needed. We developed a purified formalin-inactivated Zika virus vaccine (ZPIV) candidate that showed protection in mice and non-human primates against viraemia after Zika virus challenge. Here we present the preliminary results in human beings. METHODS: We did three phase 1, placebo-controlled, double-blind trials of ZPIV with aluminium hydroxide adjuvant. In all three studies, healthy adults were randomly assigned by a computer-generated list to receive 5 µg ZPIV or saline placebo, in a ratio of 4:1 at Walter Reed Army Institute of Research, Silver Spring, MD, USA, or of 5:1 at Saint Louis University, Saint Louis, MO, USA, and Beth Israel Deaconess Medical Center, Boston, MA, USA. Vaccinations were given intramuscularly on days 1 and 29. The primary objective was safety and immunogenicity of the ZPIV candidate. We recorded adverse events and Zika virus envelope microneutralisation titres up to day 57. These trials are registered at ClinicalTrials.gov, numbers NCT02963909, NCT02952833, and NCT02937233. FINDINGS: We enrolled 68 participants between Nov 7, 2016, and Jan 25, 2017. One was excluded and 67 participants received two injections of Zika vaccine (n=55) or placebo (n=12). The vaccine caused only mild to moderate adverse events. The most frequent local effects were pain (n=40 [60%]) or tenderness (n=32 [47%]) at the injection site, and the most frequent systemic reactogenic events were fatigue (29 [43%]), headache (26 [39%]), and malaise (15 [22%]). By day 57, 52 (92%) of vaccine recipients had seroconverted (microneutralisation titre ≥1:10), with peak geometric mean titres seen at day 43 and exceeding protective thresholds seen in animal studies. INTERPRETATION: The ZPIV candidate was well tolerated and elicited robust neutralising antibody titres in healthy adults. FUNDING: Departments of the Army and Defense and National Institute of Allergy and Infectious Diseases.


Assuntos
Anticorpos Neutralizantes/biossíntese , Anticorpos Antivirais/biossíntese , Vacinas Virais/administração & dosagem , Vacinas Virais/imunologia , Zika virus/imunologia , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Método Duplo-Cego , Humanos
14.
Sci Transl Med ; 9(420)2017 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-29237759

RESUMO

An effective Zika virus (ZIKV) vaccine will require long-term durable protection. Several ZIKV vaccine candidates have demonstrated protective efficacy in nonhuman primates, but these studies have typically involved ZIKV challenge shortly after vaccination at peak immunity. We show that a single immunization with an adenovirus vector-based vaccine, as well as two immunizations with a purified inactivated virus vaccine, afforded robust protection against ZIKV challenge in rhesus monkeys at 1 year after vaccination. In contrast, two immunizations with an optimized DNA vaccine, which provided complete protection at peak immunity, resulted in reduced protective efficacy at 1 year that was associated with declining neutralizing antibody titers to subprotective levels. These data define a microneutralization log titer of 2.0 to 2.1 as the threshold required for durable protection against ZIKV challenge in this model. Moreover, our findings demonstrate that protection against ZIKV challenge in rhesus monkeys is possible for at least 1 year with a single-shot vaccine.


Assuntos
Vacinas Virais/imunologia , Infecção por Zika virus/imunologia , Infecção por Zika virus/virologia , Zika virus/imunologia , Animais , Antígenos Virais/imunologia , DNA Viral/metabolismo , Feminino , Macaca mulatta , Camundongos Endogâmicos BALB C , Vacinação
15.
Am J Trop Med Hyg ; 96(6): 1325-1337, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28719287

RESUMO

AbstractThe safety and immunogenicity of four formulations of an investigational tetravalent dengue purified inactivated vaccine (DPIV), formulated at 1 or 4 µg with aluminum hydroxide (alum) or at 1 µg with an adjuvant system (AS01E or AS03B), were evaluated in a first-time-in-human, placebo-controlled, randomized, observer-blind, phase 1 trial in the continental United States. Two doses of vaccine or placebo were administered intramuscularly 4 weeks apart to 100 healthy adults 18-39 years of age, randomized 1:1:1:1:1 to receive one of four DPIV formulations or saline placebo. The response to a third dose was evaluated in a subset of nine participants remote from primary vaccination. Humoral immunogenicity was assessed using a 50% microneutralization assay. All DPIV formulations were well tolerated. No vaccine-related serious adverse events were observed through 12 months after the second vaccine dose. In all DPIV groups, geometric mean antibody titers peaked at Day 56, waned through 6 months after the second vaccine dose, and then stabilized. In the nine subjects where boosting was evaluated, a strong anamnestic response was observed. These results support continuation of the clinical development of this dengue vaccine candidate (clinicaltrials.gov: NCT01666652).


Assuntos
Vacinas contra Dengue/uso terapêutico , Dengue/prevenção & controle , Adjuvantes Imunológicos/química , Adolescente , Adulto , Compostos de Alúmen/química , Anticorpos Antivirais/sangue , Dengue/imunologia , Vacinas contra Dengue/administração & dosagem , Vírus da Dengue/isolamento & purificação , Relação Dose-Resposta a Droga , Feminino , Humanos , Masculino , Método Simples-Cego , Estados Unidos , Vacinação , Vacinas de Produtos Inativados/administração & dosagem , Vacinas de Produtos Inativados/uso terapêutico , Adulto Jovem
16.
Am J Trop Med Hyg ; 96(5): 1222-1226, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28193746

RESUMO

AbstractDengue virus infections have adversely impacted U.S. military operations since the Spanish-American War. The erosion of mission capabilities and lost duty days are underestimated. Appreciating the incidence and prevalence of dengue infections in U.S. military personnel is important to inform disease prevention strategies. Banked pre- and post-deployment serum samples from 1,000 U.S. military personnel with a single deployment to a dengue-endemic region were tested using a screening microneutralization assay to detect anti-dengue-virus-neutralizing antibodies. A total of 76 (7.6%) post-deployment samples were positive and 15 of the pre-deployment samples were negative. These figures represent an infection incidence of 1.5% and total of 17.6 seroconversions per 10,000 deployment months. These data represent a deploying military population with a relatively high background rate of dengue seropositivity, a low level of infection during deployment compared with background infection rates in the local populations, and the potential for worsening clinical attack rates with increased frequency of deployment. Additional studies are required to more clearly elucidate the dengue infection and disease risk in U.S. military personnel.


Assuntos
Anticorpos Antivirais/sangue , Vírus da Dengue/imunologia , Dengue/epidemiologia , Doenças Endêmicas , Militares , Adulto , África/epidemiologia , Sudeste Asiático/epidemiologia , Bancos de Sangue , América Central/epidemiologia , Dengue/sangue , Dengue/virologia , Vírus da Dengue/isolamento & purificação , Feminino , Humanos , Soros Imunes/química , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Estudos Soroepidemiológicos , Viagem , Estados Unidos/epidemiologia
17.
Science ; 354(6309): 237-240, 2016 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-27708058

RESUMO

Zika virus (ZIKV) was identified as a cause of congenital disease during the explosive outbreak in the Americas and Caribbean that began in 2015. Because of the ongoing fetal risk from endemic disease and travel-related exposures, a vaccine to prevent viremia in women of childbearing age and their partners is imperative. We found that vaccination with DNA expressing the premembrane and envelope proteins of ZIKV was immunogenic in mice and nonhuman primates, and protection against viremia after ZIKV challenge correlated with serum neutralizing activity. These data not only indicate that DNA vaccination could be a successful approach to protect against ZIKV infection, but also suggest a protective threshold of vaccine-induced neutralizing activity that prevents viremia after acute infection.


Assuntos
Imunogenicidade da Vacina , Vacinas de DNA/imunologia , Proteínas do Envelope Viral/imunologia , Vacinas Virais/imunologia , Infecção por Zika virus/prevenção & controle , Zika virus/imunologia , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Feminino , Macaca mulatta , Masculino , Camundongos , Vacinação , Proteínas do Envelope Viral/genética , Carga Viral/imunologia , Viremia/imunologia , Viremia/prevenção & controle , Zika virus/genética , Infecção por Zika virus/virologia
18.
Science ; 353(6304): 1129-32, 2016 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-27492477

RESUMO

Zika virus (ZIKV) is responsible for a major ongoing epidemic in the Americas and has been causally associated with fetal microcephaly. The development of a safe and effective ZIKV vaccine is therefore an urgent global health priority. Here we demonstrate that three different vaccine platforms protect against ZIKV challenge in rhesus monkeys. A purified inactivated virus vaccine induced ZIKV-specific neutralizing antibodies and completely protected monkeys against ZIKV strains from both Brazil and Puerto Rico. Purified immunoglobulin from vaccinated monkeys also conferred passive protection in adoptive transfer studies. A plasmid DNA vaccine and a single-shot recombinant rhesus adenovirus serotype 52 vector vaccine, both expressing ZIKV premembrane and envelope, also elicited neutralizing antibodies and completely protected monkeys against ZIKV challenge. These data support the rapid clinical development of ZIKV vaccines for humans.


Assuntos
Imunogenicidade da Vacina , Vacinas de DNA/imunologia , Vacinas Virais/imunologia , Infecção por Zika virus/prevenção & controle , Zika virus/imunologia , Adenoviridae , Transferência Adotiva , Animais , Anticorpos Antivirais/biossíntese , Anticorpos Antivirais/imunologia , Brasil , Feminino , Vetores Genéticos , Humanos , Imunoglobulinas/imunologia , Imunoglobulinas/isolamento & purificação , Macaca mulatta , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Porto Rico , Vacinas de DNA/administração & dosagem , Vacinas de Produtos Inativados/administração & dosagem , Vacinas de Produtos Inativados/imunologia , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/imunologia , Vacinas Virais/administração & dosagem
19.
Nature ; 536(7617): 474-8, 2016 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-27355570

RESUMO

Zika virus (ZIKV) is a flavivirus that is responsible for the current epidemic in Brazil and the Americas. ZIKV has been causally associated with fetal microcephaly, intrauterine growth restriction, and other birth defects in both humans and mice. The rapid development of a safe and effective ZIKV vaccine is a global health priority, but very little is currently known about ZIKV immunology and mechanisms of immune protection. Here we show that a single immunization with a plasmid DNA vaccine or a purified inactivated virus vaccine provides complete protection in susceptible mice against challenge with a strain of ZIKV involved in the outbreak in northeast Brazil. This ZIKV strain has recently been shown to cross the placenta and to induce fetal microcephaly and other congenital malformations in mice. We produced DNA vaccines expressing ZIKV pre-membrane and envelope (prM-Env), as well as a series of deletion mutants. The prM-Env DNA vaccine, but not the deletion mutants, afforded complete protection against ZIKV, as measured by absence of detectable viraemia following challenge, and protective efficacy correlated with Env-specific antibody titers. Adoptive transfer of purified IgG from vaccinated mice conferred passive protection, and depletion of CD4 and CD8 T lymphocytes in vaccinated mice did not abrogate this protection. These data demonstrate that protection against ZIKV challenge can be achieved by single-shot subunit and inactivated virus vaccines in mice and that Env-specific antibody titers represent key immunologic correlates of protection. Our findings suggest that the development of a ZIKV vaccine for humans is likely to be achievable.


Assuntos
Vacinas Virais/imunologia , Infecção por Zika virus/prevenção & controle , Infecção por Zika virus/virologia , Zika virus/imunologia , Transferência Adotiva , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Especificidade de Anticorpos , Brasil , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Feminino , Deleção de Genes , Humanos , Imunoglobulina G/imunologia , Imunoglobulina G/isolamento & purificação , Camundongos , Microcefalia/complicações , Microcefalia/virologia , Vacinas de DNA/química , Vacinas de DNA/genética , Vacinas de DNA/imunologia , Vacinas de Produtos Inativados/química , Vacinas de Produtos Inativados/genética , Vacinas de Produtos Inativados/imunologia , Vacinas de Subunidades/química , Vacinas de Subunidades/genética , Vacinas de Subunidades/imunologia , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/imunologia , Vacinas Virais/química , Vacinas Virais/genética , Zika virus/química , Zika virus/genética , Infecção por Zika virus/complicações , Infecção por Zika virus/imunologia
20.
Am J Trop Med Hyg ; 94(6): 1348-1358, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-27022153

RESUMO

We evaluated the safety and immunogenicity of two doses of a live-attenuated, tetravalent dengue virus vaccine (F17/Pre formulation) and a booster dose in a dengue endemic setting in two studies. Seven children (7- to 8-year-olds) were followed for 1 year after dose 2 and then given a booster dose (F17/Pre formulation), and followed for four more years (Child study). In the Infant study, 49 2-year-olds, vaccinated as infants, were followed for approximately 3.5 years after dose 2 and then given a booster dose (F17) and followed for one additional year. Two clinically notable events were observed, both in dengue vaccine recipients in the Infant study: 1 case of dengue approximately 2.7 years after dose 2 and 1 case of suspected dengue after booster vaccinations. The booster vaccinations had a favorable safety profile in terms of reactogenicity and adverse events reported during the 1-month follow-up periods. No vaccine-related serious adverse events were reported during the studies. Neutralizing antibodies against dengue viruses 1-4 waned during the 1-3 years before boosting, which elicited a short-lived booster response but did not provide a long-lived, multivalent antibody response in most subjects. Overall, this candidate vaccine did not elicit a durable humoral immune response.


Assuntos
Vacinas contra Dengue/normas , Dengue/prevenção & controle , Esquemas de Imunização , Anticorpos Antivirais/biossíntese , Anticorpos Antivirais/sangue , Criança , Pré-Escolar , Dengue/epidemiologia , Vacinas contra Dengue/administração & dosagem , Vacinas contra Dengue/imunologia , Humanos , Imunização Secundária , Lactente , Tailândia/epidemiologia , Vacinas Atenuadas/administração & dosagem , Vacinas Atenuadas/imunologia , Vacinas Atenuadas/normas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...